The other large
balloon in the works out at McMurdo was ANITA-3, which flew earlier this week. When we were in McMurdo, my colleague Abby Vieregg gave us a tour. ANITA (Antarctic
Impulsive Transient Antenna) is flying over Antarctica and looking for
radio signals from two sources:
- Ultra high-energy cosmic neutrinos hitting the ice below.
- Cosmic rays crashing into the atmosphere above the ice
Neutrinos are
very light neutral particles that are notoriously difficult to detect, and no
one has ever seen the ultra high-energy variety before. Cosmic Rays are an old fashioned name for
high-energy protons of still unknown origin.
The picture above shows the ANITA balloon payload (taken from an article run in the Economist), and it looks like a Christmas tree of
antennas. Each of those square fixtures
is an antenna designed to look at 300MHz-1GHz frequencies-- near where your
cell phone operates. In the picture, the
payload is going through a “hang test” to check both weight and mechanical
integrity prior to launch.
When neutrinos
crash into the Antarctic ice cap, they collide with atoms to form a
shower of charged particles, which then emit a cone of radio waves. The polarization (direction the electric fields shake on the radio wave) is vertical and that's why those antennas have two fins. The vertical one is meant to look for these radio waves generated by neutrinos whereas the horizontal fins should not see effects from neutrinos.
On the other had, cosmic rays seldom make it all the way to the surface of the Earth.
Instead, they hit gas in the atmosphere and produce their own shower of
air born charged particles. Those
particles then spin around the Earth’s magnetic field and emit their own radio
waves known as synchrotron. Remember
that at the South Pole, those fields are vertical – perpendicular to the Earth’s
surface—which means the synchrotron radio waves are horizontally polarized. So the ANITA team uses the other fin in each
antenna to watch for that.
The instrument
will fly for a 4-5 weeks over Antarctica, but by comparing all the antennas and
rejecting data with no interesting events, they expect to record only 5-10
seconds of data over the entire time.
Each event will span only a few milliseconds, so this flight will
hopefully provide thousands of events to consider.
Why bother doing
this experiment? One reason is that we
don't know where cosmic rays come from, in part because those particles
themselves are charged and can get whipped around by our galaxy’s magnetic
fields, obscuring their origin. But
scientists strongly suspect that the ultra-high-energy neutrinos have a similar
source. Since neutrinos are neutral,
they will ignore our galaxy's magnetic fields and their paths may point directly to their origin. Scientists certainly
haven’t found any nearby sources of these cosmic rays or neutrinos and we suspect that they should
scatter off the microwave background if they come from really far away. So we really don’t have a good guess of where they
come from or what accelerated them to such high energies.
No comments:
Post a Comment